DETERMINATION OF THE THERMAL BOUNDARY
CONDITIONS FROM NONSTATIONARY-TEMPERATURE
MEASUREMENT DATA
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A method of constructing a solution of the converse heat-conduction problem is presented. The
inverse operator is represented in explicit form with a regularization parameter which depends
on the level of the error in the initial data.

‘In the majority of papers on the solution of ill-posed converse problems in heat conduction, the problem
is reduced to setting up constructive (numerically realizable) methods of solving integral equations. However,
these problems do not enable one to obtain the inverse operator in explicit form and lead to the solution of ei-
ther linear algebraic systems or to finding the eigen vectors and numbers of matrices [1-3]. Below we des-
cribe a method of constructing the regularized inverse operator in explicit form, which enables one to obtain
a constructive solution of the initial ill-posed problem as it applies to reconstructing the thermal boundary
conditions from data obtained from measurements of the nonstationary temperatures in the constructional ele-
ments at a certain distance from the heated surface.

Suppose that in a heat experiment a model of a plane unbounded plate is set up, which is subjected to
heating or cooling on one side and is thermally insulated on the other. From measurements of the temper-
ature at different times at a point with coordinate x = x; it is required to determine the heat flux and the tem-
perature on the surface (x = ) subjected to heating or cooling. The thermal properties over the temperature
range employed in the experiment are assumed to be constant.. The mathematical formulation of the problem
therefore has the following form:
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The solution of problem (1) in Laplace-transform space can be written in the following form [4]:
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The ill-posed nature of the problem in this case manifests itself in the fact that the transforms vsshvs/chvs;
and chV's/chvsé; with ¢ < 1, due to the fact that they approach « as |s| — e, donot satisfy one of the transfor-
mation requirements and do not have originals in the form of ordinary functions. To obtain a solution which
can be transformed we will use Eq. (1) and introduce into it a "regularizing source" which depends on T(Fo, &)
and the parameter 8
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It is obvious that gexp[—8(Fo— Fo)]—nﬁ(Fo—ﬁo) when 8 —«, where (Fo*-'fo) is the Dirac function, and if the
term introduced into (3) has the form
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for fairly large g, the problem would become similar to the quasitransformation method [5]. In this case
B = B, and when f; — = the last term in (3) would approach zero. We apply a Laplace transformation to (3)
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when T(0, &) = EZ(;_FIS’_E)_! =0 . The solution of (), taking (1') into account, has the form
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Henceforth we will confine ourselves to obtaining a solution for (_1(Fo, 1). Expression (6) can be converted as
follows:
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which corresponds to the relationship between q(Fo, 1) and T(Fo, £,) in transformation space when solving the
initial system (1). However, whereas (2) cannot be transformed in the sense of obtaining the inverse operator
that is bounded when Fo = 0, Eq. (8) can be so transformed. In this case
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The function ¥is determined by the values for Fo — Fo of the original of the expression
1
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The original of the first term in (10) can be obtained by expanding sh l/ TP (I —§&) 1in series
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where L, are Laguerre polynomials of order n. To obtain the original of the second term we expand the hyper-
bolic tangent and cosine in series as in [6] '
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Assuming that 2&12 (4P/a3)/[(2k — 1) + E24p/n2) = thV B, after changing into the space of the originals we arrive
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at the expression
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Combining (11) and .(14) we obtain
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The possibility of obtaining a realizable solution of the form (9) numerically sufficiently close to the desired
solution gg is obviously determined by the behavior of the function ¥ for large values of §. In fact, it is easy
to show that the solution of the direct problem (4) reduces to the solution of the direct initial problem (1) as

B —«. On the other hand, Eq. (15) as 8~ has no limit in the usual sense, and reduces to the sum of 6-func-
tions and its derivatives. Convolution of the latter with T'(Fo) gives a solution of the form [7] which is the
sum of the m~th derivatives of the experimental function. As is well known, m-fold differentiation of the ex-
perimental function is generally an ill-posed operation and such a solution is therefore not constructive. Since
the initial data are always known with a certain error, to construct an approximate solution it is best to cal-
culate (15) not for arbitrarily large B, but for values which are matched to the level of the error in the initial
data. In fact, it follows from an analysis of (15) that ¥(Fo ~ Fo) for large 8 contains rapidly oscillating func-
tions with a fairly large weight, the presence of which, when (9) is evaluated numerically, leads to large
errors. To choose the optimum value of 8 we will consider the difference
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The last term in (16) obviously represents a solution in transforms of the accurate direct problem with ther-
mal flux calculated from (9). The original of A@(¥o) has the form
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Fig. 1. Results of a calculation of the heat flux q(Fo) on
the surface: 1) g = 90, o= 0; 2) 40, 0.01; 3) 40, 0.05; 4) 20,
0.05; 5) the true values of the temperature of the thermally
insulated wall; and 6) the heat flux. q,W/m?, AT, °K.

Fo -
Ag (Fo) = j %Q— [l — ¥, (B, Fo— Fo)]dFo. 17

The function Agp(Fo) therefore represents the difference between the measured temperature and the temper-
ature calculated from the reconstructed heat flow. Hence, it is natural to impose the following condition on
the choice of the parameter 3:
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where Fo* is the length of the sample.

Below we give the results of a calculation of the specific heat flux on the surface of a plane wall from the
known temperature on the thermally insulated side. We used, asaccurate values of the temperatures, results
obtained by solving the direct problem with a thermal flux varying as q = 10°Fo? W/m?, for a wall 10 mm thick
with @ = 0.04 m®>/h and A = 40 W/m-K. The figure shows theoretical values of the heat fluxes calculated from
(9) for different g (from 20 to 90). To explain the effect of the random errors in the initial data, the results of
a calculation of the direct problem (the "accurate" values) were distorted by introducing random numbers with
a uniform distribution. One can easily follow from the graphs the effect of the parameter g and theerrorlevel,
introduced into the "accurate" initial data, on the results of the calculation of q(Fo, 1). As can be seen from
the figure, the regularizing effect of § manifests itself in an increase in the stability of the solution as 8 de-
creases when the error level in the initial data increases. Then, when the parameter B is reduced, the solution
on the "accurate" initial data, as might have been expected, differs even more from the accurate solution. An
obvious compromise is to chooge the optimum value of the parameter 8 from Eq. (18).

NOTATION

T, temperature, °K; g, specific heat flux, W/ m?; 51, dimensionless thermal flux, q = qé/(xTo); X,X{, CO-
ordinate, m; ¢, &, dimensionless coordinate, ¢ = x/8; &, plate thickness, m; @, thermal diffusivity, m%/h; A,
thermal conductivity, W/ m-K; Fo, Fo, Fo*, Fourier numbers, Fo = a/6%; 7, time, h; o, mean-square error
of the results of temperature measurements,°K; 3, regularization parameter.

LITERATURE CITED

1. A. N. Tikhonov and V. Ya. Arsenin, Methods of Solving Ill-Posed Problems [in Russian], Nauka, Mos~
cow (1974).

2, 0. M. Alifanov, "Determination of the limiting thermal mode from a solution of the converse heat-con-
duction problem, " Inzh. -Fiz. Zh., 26, No. 2, 349~-359 (1974).

777



3. A. A. Vainshtein, "Filtering of interference in the numerical solution of 1ntegral equations of the first
kind," Dokl. Akad. Nauk SSSR, 204, No. 5, 1067-1071 (1972).

A. V. Lykov, Theory of Heat Conduction [1n Russian], Vysshaya Shkola, Moscow (1967).

5. R. Lattes and J.-L. Lions, Method of Quasi-Reversibility: Applications to Partial Differential Equations,
Elsevier (1969).

I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press (1966).
A. G, Temkin, Converse Methods of Heat Conduction [in Russian], Energiya, Moscow (1973).

i

o

EXPLICIT SOLUTIONS OF MULTIDIMENSIONAL
INVERSE UNSTEADY HEAT-CONDUCTION PROBLEMS

A. D. Iskenderov, Dzh. F. Dzhafarov, . UDC 536:24
and O. A. Gumbatov :

Explicit solutions are found of a number of inverse problems of determining the thermal con-
ductivity in linear and nonlinear heat transport.

The determination of variable thermophysical characteristics of media is one of the urgent problems
of contemporary thermophysics. Recently there has been a rapid development of the theory of multidimen-
sional inverse problems [1-5]. In these investigations great importance is attached to the development of
special methods which yield explicit solutions. These solutions can serve directly as a basis for experimen-
tal methods of determining variable physical characteristics of media.

We consider a thermal process described by the system

C, O Ti—vhix, HVT +ale, HT =Qx, y, 0, @
Tlizo = 9 (x, y), (2)
T'B,sz =0, T|I‘1X52 =[E y 0. (3)

If the quantities C, A, & Q, ¢, and f are known, system (1)-(3) canbe used to calculate the temperature
distribution T(x, y, t). Our primary problem is to determine the thermal conductivity A(x, t). To do this we
. supplement system (1)-(3) by the condition

oT
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which is the expression for the temperatdre gradient on the plane y = 7, where 7 is a fixed point on the boun-
dary I'y. The coefficient \(x, t) is sought in the class of continuous and positive functions.

Questions of the correctness of problems of the type (1)~(4) were studied in [4]. We consider cases for
which the solutions can be found in explicit form.

We denote by w(y) the normalized eigenfunction of the operator —Ay corresponding to the eigenvalue
p >0, i.e.,
— Ao (y) = po (1), 0 @)y, =0, y€D, )

Ifm=1, D, = [0, 1], then w(y) = sin kay, p= k*%, where k is a positive integer. It is not difficult to indicate
the general form of the function w(y) for a number of other domains also.
We consider a thermal process in which the following conditions are realized:

a) Qx, ¥, t) = Qy(x, thw(y), ¢(x, ¥) = g(Xw(y), (&, y, t) =1 X (§, t) w(y), where Qy(x, t), @,(x), (s,
t) are given functions;’ .
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