
DETERMINATION OF THE THERMAL BOUNDARY 

CONDITIONS FROM NONSTATIONARY-TEMI~ERATURE 

MEASUREMENT DATA 

V. I. Zhuk, S. A. Ii'in, 

and D. N. Chubarov 
UDC 536.12 

A method of construct ing a solution of the converse  heat-conduction problem is presented.  The 
inverse opera tor  is represented in explicit form with a regular izat ion pa ramete r  which depends 
on the level of the e r r o r  in the initial data. 

I n  the major i ty  of papers on the solution of i l l-posed converse  problems in heat conduction, the problem 
is reduced to setting up construct ive (numerical ly realizable) methods of solving integral equations. However,  
these problems do not enable one to obtain the inverse opera tor  in explicit form and lead to the solution of e i-  
ther  l inear  algebraic sys tems or  to finding the eigen vectors  and numbers of matr ices  [1-3]. Below we des -  
cribe a method of construct ing the regular ized inverse operator  in explicit form,  which enables one to obtain 
a construct ive solution of the initial i l l-posed problem as it applies to recons t ruc t ing  the thermal  boundary 
conditions f rom data obtained f rom measurements  of the nonstat ionary tempera tures  in the constructional  e le-  
ments at a cer ta in  distance from the heated surface.  

Suppose that in a heat experiment a model of a plane unbounded plate is set up, which is subjected to 

heating or cooling on one side and is thermally insulated on the other. From measurements of the temper- 

ature at different times at a point with coordinate x = x I it is required to determine the heat flux and the tem- 

perature on the surface (x = 5) subjected to heating or cooling. The thermal properties over the temperature 

range employed in the experiment are assumed to be constant. The mathematical formulation of the problem 
therefore has the following form: 

02T (Fo, ~) OT (Fo, ~) 

0~ 2 0 Fo 

T(0, ~)= 0; OT (Fo,0~ ~) ~=o = 0; T (Fo, ~)[.~=~, = T (Fo, ~1); 

, O T ( F o ,  ~) = ? ,  T(Fo, 1 ) = O  

The solution of problem (1) in Lap lace - t r ans fo rm space can be writ ten in the following form [4]: 

q(s, 1)= T(s, ~,)l"sshl/-s . T(s, 1)= T(s, ~i) c h l / s  

(1) 

(i') 

(2) 

The i l l-posed nature of the problem in this case manifests itself in the fact that the t r ans forms  v~-sh~]~/ch~ 1 
and c h ~ / c h ~  1 with ~ < 1, due to the fact that they approach ~o as I s I ~ % do not sat isfy one of the t r a n s f o r -  
mation requirements  and do not have originals in the form of ord inary  functions. To obtain a solution which 
can be t ransformed we will use Eq. (1) and introduce into it a "regular iz ing source"  which depends on T(Fo, ~) 
and the pa ramete r  fi 

Fo 
02T (Fo, ~) OT (Fo, ~) (3) 02T (Fo, ~) + exp [--~ (Fo - -  I~o)] dF~ -- 

0~ 2 0 Fo 2 0 Fo 
0 

It is obvious that f i exp[ - f i (Fo-  F o ) ] ~ 5 ( F o - F o )  when fi --.oo where 5 ( F o - ~ o )  is the Dirac function, and if the 
t e rm introduced into (3) has  the form 
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Po 

~ aZT (1~o, ~) t} exp [--~ (Fo--  1~o)1 d Po -,- ! c)eT (Fo, ~) 
a ~~ [30 ~> ~ [Jo a Fo 2 

0 

(4) 

for fairly large fi0 the problem would become similar to the quasitransformation method [5]. In this case 

fi = fi0 and when fl0 -~:o the last term in (3) would approach zero. We apply a Laplace transformation to (3) 

sT (s, ~) 
s2T (s, ~) d2T (s, ~) 

s § ~ d~ ~ 

(5) 

when T (0, ~) -- OT (Fo, ~) ] ~ 0 . The solution of (5), taking (i') into account, has the form 
O Fo tro=o 

s~ 
q(s, 1 ) : T ( s ,  ~ ' ) v | ' / s + B  

T (s, 1) = T (s, h)  
ch V / -  s[3 

s + f f  

(6) 

/ 

Henceforth we will confine ourselves to obtaining a solution for q(Fo, i). Expression (6) can be converted as 

follows: 

(8) 

It is obvious that 

lira q (s, 1) - T (s, ~ )Vs{sh  ]/~(1 - -  ~) -}- th t / s ~  ch V;s(1 - -  h)}, 

which c o r r e s p o n d s  to the r e l a t ionsh ip  be tween  q(Fo,  1) and T(Fo ,  ~1) in t r a n s f o r m a t i o n  space  when solving the 
ini t ial  s y s t e m  (1). H o w e v e r ,  whe reas  (2) cannot  be t r a n s f o r m e d  in the sense  of obtaining the i n v e r s e  o p e r a t o r  
that  is bounded when Fo = 0, Eq.  (8) can  be so t r a n s f o r m e d .  In this e a se  

Fo 

q-(Fo, I) = J dT(PO,d Fo h )  T (Vo --  Po) dPo. (9) 
0 

The function �9 is determined by the values for Fo - Fo of the original of the expression 

" : ', § , ,-,,, V } . �9 , o ,  

The original of the first term in (i0) can be obtained by expanding sh ( ~  (I--~I). in series 

_~ [ ~ + I ( 1 -  ~l)~+lL'*(~6) exp (--[~0), 

n ~ 0  

( i i )  

where L n are Laguerre polynomials of order n. To obtain the original of the second term we expand the hyper- 

bolic tangent and cosine in series as in [6] 
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% (s) = 2 L  / 1 �9 4-8 J s + [ (2k - -  1)~n ~] (2n)!(s + ~)n (12) 
~=~ 4 ~ +  ~- j ,~=o 

F 
We will put (2k -1)2~2/[4~ + 

[1 + (/3 - 7k)/(s  + 7k]/(s  + fi). 

( 2 k -  1)2~ z] 
8 =7~. Then the express ion  1/(s  + y k) can be r ep resen ted  in the fo rm 

Substituting the r e su l t  into (12) we obtain 

~o 8 ~ (1 -- h)2~s~ 
= (2n)!(s+ {~)n+~ " 

(13) 

Assuming that  2~1 ~ (48/~2)/[(2k-- lfi + ~4~/~ 2] = th ]#~1,  af te r  changing into the space  of the or iginals  we a r r i v e  h=l 
at t h e  expression 

48 

• exp [--8 (0 - -  0')1 dO'. 

Combining (11) and �9 we obtain 

, ~  8~+ ~ (1 - - ~ ) 2 n + ' L , ~  [8 (Fo - -  ~'o)] 
(Vo 

(2n + 1)! rt~0 

Fo--~ 

+ %1 

% (0) = th V ~ I  E Ln (80) ~ (1 - -  ~1)2~ 
~=0 (2n)l exp (--~0) + 

0 
+ 2~i (2k - -  1)2~ 2 exp (--7~0') (2n)1 

= ~ +  ~=o " 

exp [--8 (Fo - -  I~o)1 + 

n ~ O  

~1) L,~ [8 (Fo -- Po)] 8n(1 __ ~n 

(2n)! 
exp [ - - I t  (Fo - -  t~o)1 + 

(14) 

(15)  

o ~ + (2k - l ) ~  (2n)! 
48 ~=o 

The possibi l i ty  of obtaining a rea l izab le  solution of the f o r m  (9) numer ica l ly  suff icient ly c lose  to the des i red  
solution qd is obviously de te rmined  by the behavior  of the function �9 for  l a rge  values of/3. In fact ,  it is easy  
to show that  the solution of the d i rec t  p rob lem (4) reduces  to the solution of the d i rec t  initial p rob lem (1) as 
t3 ~oo .  On the other  hand, Eq. (15) as fi-.oo has  no l imit  in the usual sense ,  and reduces  to the sum of 5- func-  
tions and its de r iva t ives .  Convolution of the l a t t e r  with T' (Fo) gives a solution of the fo rm [7] which is the 
sum of the m - t h  de r iva t ives  of the exper imenta l  function. As is well  known, m-fold  different ia t ion of the ex-  
per imenta l  function is genera l ly  an i l l -posed operat ion and such a solution is t he re fo re  not const ruct ive .  Since 
the initial data a re  always known with a ce r t a in  e r r o r ,  t~ cons t ruc t  an approximate  solution it is bes t  to ca l -  
culate (15) not for  a r b i t r a r i l y  la rge  13, but for  values  which are  matched to the level  of the e r r o r  in the initial 
data.  In fact ,  it follows f rom an analysis  of (15) that ~(Fo - Fo) for  la rge /3  contains rapidly  osci l la t ing func- 
tions with a fa i r ly  la rge  weight, the p resence  of which, when (9) is evaluated numer ica l ly ,  leads to l a rge  
e r r o r s .  To choose the opt imum value of/3 we will consider  the di f ference 

Aq~ (s) = T (s,~) - -  T (s, ~) • 

V~S~" {sh ]//" ~s[~ (1--~1)--~ th11///- s__~is[~ c h V / s ~  ( l ~  -- ~1)} 
(16) 

X 
Vssh V~ 

The last term in (16) obviously represents a solution in transforms of the accurate direct problem with ther- 
mal flux calculated from (9). The original of Aq~(Fo) has the form 
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~T 

I, - - / 4  

5 -qs- lo 8- 

~,02 Cs c Cs Fo 

Fig. 1. Results of a calculation of the heat flux q(Fo) on 
the surface: 1) /3 = 90, c = 0; 2) 40, 0.01; 3) 40, 0.05; 4) 20, 
0.05; 5) the true values of the temperature of the thermally 
insulated wall; and 6) the heat flux. q,W/m 2, AT, ~ 

FO 
~(p (FO) = J' d T  d~70(FO' ~i) 

0 
[I -- 'lh (~, Fo -- ~o)1 d ~o (17) 

The function A~(Fo) therefore represents the difference between the measured temperature and the temper- 
ature calculated from the reconstructed heat flow. Hence, it is natural to impose the following condition on 
the choice of the parameter /3: 

Fo ~o~ (18) 

.f ( o)i2d M (Fo) d Fo, 
0 0 

where Fo ~ is the length of the sample. 

Below we give the results of a calculation of the specific heat flux on the surface of a plane wall from the 
known temperature on the thermally insulated side. We used, as accurate values of the temperatures, results 
obtained by solving the direct problem with a thermal flux varying as q = 106Fo 2 W/m 2, for a wall I0 mm thick 
with a = 0.04 m2/h and X = 40 W/re. K. The figure shows theoretical values of the heat fluxes calculated from 
(9) for different/3 (from 20 to 90). To explain the effect of the random errors in the initial data, the results of 

a calculation of the direct problem (the "accurate" values) were distorted by introducing random numbers with 
a uniform distribution. One can easily follow from the graphs the effect of the parameter /3 and the errorlevel, 
introduced into the "accurate" initial data, on the results of the calculation of q(Fo, i). As can be seen from 
the figure, the regularizing effect of/3 manifests itself in an increase in the stability of the solution as /3 de- 
creases when the error level in the initial data increases. Then, when the parameter fi is reduced, the solution 
on the "accurate" initial data, as might have been expected, differs even more from the accurate solution. An 
obvious compromise is to choose the optimum value of the parameter/3 from Eq. (18). 

NOTATION 

T, temperature, ~ q, specific heat flux, W/m2; q, dimensionless thermal flux, ~ = q6/(kT0); x, xl, co- 
ordinate, m; ~, ~i, dimensionless coordinate, ~ = x/6; 5, plate thickness, m; a, thermal diffusivity, m2/h; X, 
thermal conductivity, W/re.K; Fo, Fo, Fo*, Fourier numbers, Fo = aT/62; T, time, h; ~r, mean-square error 

of the results of temperature measurements,~ p, regularization parameter. 

i. 

2. 
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E X P L I C I T  S O L U T I O N S  O F  M U L T I D I M E N S I O N A L  

I N V E R S E  U N S T E A D Y  H E A T - C O N D U C T I O N  P R O B L E M S  

A .  D.  I s k e n d e r o v ,  D z h .  F .  D z h a f a r o v ,  
a n d  O.  A .  G u m b a t o v  

UDC 536:24 

Explicit solutions are found of a number of inverse problems of determining the thermal con- 
ductivity in linear and nonlinear heat transport. 

The determination of variable thermophysical characteristics of media is one of the urgent problems 
of contemporary thermophysics. Recently there has been a rapid development of the theory of multidimen- 
sional inverse problems [1-5]. In these investigations great importance is attached to the development of 
special methods which yield explicit solutions. These solutions can serve directly as a basis for experimen- 
tal methods of determining variable physical characteristics of media. 

We consider a thermal process described by the system 

C (x, t) Tt - -  V ~ (x, t) V T + ~ (x, t) T = O (x, y, t), (1) 

T[~=o = r (x, g), (2) 

Yl~,xr, = 0, Y l r , x ~  = f (~, g, t). (3) 

If the quant i t ies  C,  k, a, Q, a, andf  a re  known, systen~ (1)-(3) canbe  used to ca lcu la te  the t e r~pe ra tu r e  
d i s t r ibu t ion  T(x, y,  t). Our  p r i m a r y  p r o b l e m  is to  d e t e r m i n e  the t h e r m a l  conduct iv i ty  k(x, t). To do this  we 
supplement  s y s t e m  (1)-(3) by the condi t ion 

OT 
--: 7 (x, t), (4) 

which is the e x p r e s s i o n  for  the t e m p e r a t u r e  g rad ien t  on the plane y = ~, where  ~ is a fixed point on the boun-  
d a r y  F 2. The coeff ic ient  ~(x, t) is sought in the c lass  of continuous and posi t ive  funct ions .  

Ques t ions  of the c o r r e c t n e s s  of  p rob lems  of the type (1)-(4) were  studied in [4]. We c o n s i d e r  c a s e s  for  
which the solut ions  can be found in expl ic i t  f o r m .  

We denote  by  w (y) the no rma l i zed  e igenfunct ion of the o p e r a t o r  - A y  c o r r e s p o n d i n g  to the e igenvalue  
> 0, i . e . ,  

- -  hu(o (g) = ~ o  (g), (o (g)[r, = 0, g E D~. (5) 

If m = 1, D2 ~ [0, 1], then w(y) = s in  kuy, p = k2n 2, where  k is a pos i t ive  in teger .  It is not diff icul t  to  indicate 
the gene ra l  f o r m  of the funct ion ~(y) fo r  a number  of o ther  domains  also.  

We cons ide r  a t h e r m a l  p r o c e s s  in which the fol lowing condit ions a r e  r ea l i zed :  

a) Q(x, y,  t) = Qo(x, t)w(y), ~o(x, y) = ~Oo(X)w(y), f(~, y,  t ) =  fo • (~, t) ~(y) ,  where  Qo(x, t), ~o(x), fo(~, 
t) a re  given functi.ons; ~ 
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